Sentiment and Uncertainty about Regulation*

Tara M. Sinclair† Zhoudan Xie‡

May 31, 2022

Abstract

Businesses regularly cite the regulatory environment as a factor impacting their production and hiring decisions, but there is little research on quantifying the sentiment and uncertainty around regulation. We present measures of sentiment and uncertainty about the U.S. regulatory environment using computational text analysis of an original news corpus from seven leading U.S. newspapers. We build monthly indexes of regulatory sentiment and uncertainty and categorical indexes for 14 regulatory policy areas from 1985 through 2021. Impulse response functions indicate that a negative shock to regulatory sentiment is associated with large, persistent drops in future output and employment, while increased regulatory uncertainty overall reduces output and employment temporarily. Economic outcomes are particularly sensitive to sentiment and uncertainty around certain regulatory areas such as transportation, communications, finance and banking, and energy.

Keywords: Regulation, text analysis, NLP, sentiment analysis, uncertainty

JEL Codes: E2, E3, K2, O4

*The authors gratefully acknowledge the GW Regulatory Studies Center for support for this project and ProQuest for providing access to TDM Studio. The authors thank Susan Dudley, Jerry Ellig, Steve Balla, Brian Mannix, Bridget Dooling, Roberto Samaniego, Arthur Turrell, Federico M. Ferrara, Bentley Coffey, and Xiaohan Ma for their insightful comments. The authors are also grateful to the participants at the 2020 Banca d’Italia and Federal Reserve Board Joint Conference, the Southern Economic Association 90th and 91st Annual Meetings, the GW H. O. Stekler Research Program on Forecasting seminar, the 2021 Federal Forecasters Conference, the 2021 ESCoE Conference on Economic Measurement, and the Pennsylvania State University Macro Seminar for their helpful comments. John Bertino and Neha Mathur provided excellent research assistance.

†Department of Economics and GW Regulatory Studies Center, the George Washington University and Centre for Applied Macroeconomic Analysis, ANU. Email: tsinc@gwu.edu

‡GW Regulatory Studies Center and Department of Economics, the George Washington University. Email: zxie@gwu.edu
1 Introduction

The U.S. government issues thousands of regulations a year. Some of these are in response to crises, such as the COVID-19 pandemic, while others have evolved over time to address longer term goals. Regulations can address market failures to reduce or eliminate negative externalities and improve efficiency of resource allocation. However, poorly designed or excessive regulations may impose “regulatory burden” on the economy, which can potentially generate substantial adverse effects on economic outcomes. How regulation affects the economy is thus an important question for both researchers and policymakers and particularly relevant today.

Efforts to answer this question are often hindered by the difficulty of measuring regulation. The existing research has mostly focused on measuring the quantity of regulation. However, the regulatory environment for economic activities depends not only on how many regulations there are but also on the types of regulations, the enforcement of specific regulatory requirements, the particular policy instrument used to achieve regulatory goals, and the subjective perception of regulation. To study the effects of regulation through a holistic lens, we construct news-based, time-series measures of sentiment and uncertainty about the U.S. regulatory environment using computational text analysis of newspaper articles from 1985 through 2021.

Using the measures, we examine the impacts of regulatory sentiment and uncertainty on macroeconomic performance. We find that a negative shock to regulatory sentiment is associated with large, persistent drops in future output and employment, while a regulatory uncertainty shock overall reduces output and employment temporarily. These findings contribute to the understanding of economic effects of regulation by discovering that changes in the regulatory environment that induce negative perception or higher uncertainty have an impact on aggregate economic activity. Moreover, regulatory sentiment, as defined in our study, may be a more appropriate measure reflecting the connection between regulation and macroeconomic outcomes than regulatory uncertainty.
Our text analysis covers 608,172 news articles related to regulation from seven leading U.S. newspapers from January 1985 through December 2021. The normalized volume of these articles suggests increasing news attention to regulatory policy in the U.S. over time, stressing the need to investigate the content of regulation-related news. We then use a natural language processing (NLP) technique, lexicon-based sentiment analysis, to evaluate two dimensions of the news corpus: the average sentiment (i.e., positive and negative tone) and the degree of uncertainty expressed in the news about regulation. Based on the estimated sentiment and uncertainty, we build monthly indexes of regulatory sentiment and uncertainty, respectively, from 1985 through 2021.

We interpret a decrease in the regulatory sentiment measure as a change in the overall regulatory environment that is perceived negatively by stakeholders and reflected in the media, while an increase as a positively perceived change. Similarly, an increase in the regulatory uncertainty measure represents a change in the regulatory environment that imposes greater uncertainty, and a decrease indicates lower uncertainty. When firms perceive negatively or become uncertain about a change in the regulatory environment, they may withdraw or postpone their hiring and investment activities, thereby affecting aggregate economic outcomes.

To examine this economic impact, we estimate impulse responses of key macroeconomic variables to shocks in regulatory sentiment and uncertainty. Our baseline analysis follows the vector autoregression (VAR) models in Baker et al. (2016), and the robustness checks employ alternative VAR specifications and local projections of Jordà (2005). The impulse response estimates suggest that a negative shock to regulatory sentiment is associated with large, persistent drops in future output and employment. This effect remains after controlling for existing measures of general economic sentiment or policy uncertainty, implying that our regulatory sentiment measure contains some unique information that is not captured by other related measures. We also observe a significant reduction in output and employment in response to a regulatory uncertainty shock, whereas this effect is smaller in terms of
magnitude and relatively short-lived.

In addition to the aggregate measures, we categorize relevant news articles into 14 regulatory policy areas and construct categorical indexes that measure regulatory sentiment and uncertainty around specific policy areas. We find that economic outcomes are particularly sensitive to sentiment and uncertainty around certain regulatory policy areas. Specifically, negative regulatory sentiment shocks related to transportation and communications have negative, long-lasting effects on future output and employment, and sentiment shocks around finance and banking regulation have relatively transitory but measurable effects. Increased uncertainty about labor and workplace regulation and energy regulation appears to have a stronger linkage with output compared to the other areas.

Economic theory suggests that regulation can have negative or positive impact on the economy. On one hand, regulation generally imposes restrictions on firm behavior and thus diverts resources that otherwise might be used for production and innovation (Eads 1980; Coffey et al. 2020). Regulation may also change the firm’s ability to calculate the payoffs to investments (Eads 1980). Uncertainty can exacerbate this effect, since it hampers firms’ ability to form a probability distribution of payoffs, making firms more cautious about their investment and hiring decisions (Bloom 2009, 2014). On the other hand, regulation can generate positive economic impacts by changing the nature and the optional institutional patterns of research the firm undertakes (Eads 1980). A well-known example is the “Porter hypothesis,” which argues that properly designed environmental regulations can stimulate innovation that may partially offset or even exceed their compliance costs (Porter and Van der Linde 1995).

How regulation affects the economy in aggregate thus becomes an empirical question. Existing approaches to measuring regulation at an aggregate level primarily focus on the quantity of regulation, such as the number of rules published by federal agencies, and the number of pages, total words, and command words in the regulatory code (e.g., the Code of Federal Regulations) (Dawson and Seater 2013; Mulligan and Shleifer 2005; Coffey et al.)
Others use government spending and staffing devoted to regulatory activity as a proxy of regulation (Beard et al., 2011; Sinclair and Vesey, 2012). These studies generally find a negative or insignificant relationship between regulation and macroeconomic outcomes.

However, the existing empirical measures do not provide complete information about the aggregate effects of regulation. The quantity of regulation or regulators’ spending is far from a perfect measure of regulation itself (Calomiris et al., 2020; Simkovic and Zhang, 2019). Moreover, these measures typically track a single aspect of regulation on a relatively low frequency (mostly annually) due to the prolonged rulemaking or budget process. Our news-based measures of regulatory sentiment and uncertainty fills this gap. The measures capture real-time fluctuations in the outlook for the overall regulatory environment on a much higher frequency. These fluctuations can be caused by various types of regulatory events, such as the promulgation of a new regulation, a company’s regulatory compliance or violation, a regulatory investigation, or a lawsuit challenging agency regulatory actions. Therefore, our study presents a more holistic view about the economic impact of regulation.

Sentiment and uncertainty around the regulatory environment are important because firm decisions are subject to these subjective perceptions. Firms’ anticipation of payoffs may depend on whether they hold a positive or negative view about the current and future regulatory environment, which captures the idea of “animal spirits” that influence household and business behavior (Keynes, 1936; Shiller, 2017). An analogy is consumer sentiment measuring subject attitudes toward current and future economic conditions. Survey-based measures, such as the Michigan Consumer Sentiment Index, have been widely examined in economic studies and found to have incremental predictive power for consumption expenditures and other economic activity (Bram and Ludvigson, 1998; Carroll et al., 1994; Benhabib and Spiegel, 2019). Closely related to sentiment, uncertainty can postpone firm actions like investment and hiring (Bloom, 2014; Bachmann and Bayer, 2013). For example, a pharmaceutical company may have the option to invest in the development of a new drug; however, if the company is uncertain about whether the drug would be approved to enter the market
by regulators, it may prefer to wait until some certainty is achieved.

Recent developments in natural language processing (NLP) have introduced economists to use unstructured text as data and build novel measures of sentiment and uncertainty (Gentzkow et al., 2019). Newspapers are a popular source of text data, as they provide high-frequency information and can work as "information intermediaries" with an effect of influencing and shaping public opinions (Ter Ellen et al., 2021). Examples include news-based economic sentiment measures, which are found to be strongly correlated with survey-based consumer sentiment measures and help explain aggregate economic fluctuations (Shapiro et al., 2020; Fraiberger, 2016). Another seminal contribution is made by the news-based economic policy uncertainty (EPU) index developed by Baker et al. (2016). Numerous studies have been published subsequently to develop similar uncertainty measures for other countries (Arbatli et al., 2017; Cerda et al., 2016) and specific policy areas such as trade policy and monetary policy (Caldara et al., 2020; Husted et al., 2019). This research generally finds that increased policy uncertainty reduces business investment and employment growth, raises precautionary savings, and increases stock price volatility (Baker et al., 2016; Bloom et al., 2018; Gulen and Ion, 2016; Caldara et al., 2020; Julio and Yook, 2016).

We contribute to this literature by developing sentiment and uncertainty measures specifically related to regulation as well as studying both for different regulatory areas. Few studies have examined sentiment or uncertainty around regulation. An exception is Baker et al. (2016)’s categorical EPU index on regulation, which measures economic uncertainty around regulatory policy. They use a pre-defined set of terms related to regulation, in addition to their economic, uncertainty, and policy terms, to identify news articles that reflect regulatory policy uncertainty and construct the index based on the volume of those articles. Our regulatory uncertainty measure differs from theirs in at least three ways. First, we identify news content related to regulation by defining a computer-generated dictionary of “regulatory noun chunks” based on titles of rules published by federal agencies. This approach covers a comprehensive set of linguistic terms related to regulatory issues and involves mini-
nal human judgment. Second, we quantify the degree of uncertainty using a NLP sentiment analysis method, instead of quantifying it based on whether the article contains any uncertainty terms. Third, we use regressions to construct the time-series measure following Shapiro et al. (2020) instead of relying on the volume of relevant articles.

Our study has several practical implications. First, the dynamic relationships we show in this paper suggest that an improvement in the regulatory system that increases public confidence and reduces uncertainty in government interventions may help minimize unnecessary regulatory burden on the economy. Second, news sentiment and uncertainty around certain regulatory policy areas appear to have particularly strong links with macroeconomic performance. Policymakers in those areas should explicitly consider both incremental and cumulative economic effects of their regulations and increase transparency and clarity of the regulations. Third, up-to-date measures of regulatory sentiment and uncertainty can provide forward-looking information about economic conditions. This information may help firms better anticipate payoffs and make optimal hiring and investment decisions.

In the next section, we describe the data we use in this study, including text data of news articles and economic data used in the VAR analysis. In Section 3, we describe our approach to identifying the news content related to regulation and the evidence of increasing media attention to regulation over time. Section 4 presents the regulatory sentiment and uncertainty indexes, including the sentiment analysis method we use to construct the indexes, some descriptive analysis of the indexes, and the validation of the indexes. Section 5 shows the impulse responses of macroeconomic variables to regulatory sentiment and uncertainty shocks. In Section 6, we describe the categorical indexes that measure regulatory sentiment and uncertainty in 14 policy areas and their varied roles in the impulse responses of macroeconomic outcomes. Section 7 concludes the study.
2 Data

Our initial news corpus includes over one million news articles that contain the keywords starting with “regulat” or “deregulat” (e.g., “regulation,” “regulator,” “deregulation”) from seven U.S. newspapers published between January 1985 and December 2021. The seven newspapers are Boston Globe, Chicago Tribune, Los Angeles Times, New York Times, USA Today, Wall Street Journal, and the Washington Post. We access to the full texts and metadata of the news articles through ProQuest’s TDM Studio, which provides a comprehensive collection of historical and current newspapers in a machine readable format (ProQuest, 2022). We remove articles with identical full text to a previous article, leaving 990,262 articles in the corpus.

Since the keyword “regulation” and its variants can be used in many contexts other than referring to government regulatory policy, we conduct further analysis to refine the corpus by defining a dictionary of regulatory noun chunks (i.e., certain noun phrases extracted from the text) from the titles of all rules considered by federal agencies from 1995 to 2019. The data of rule titles are obtained from the federal government’s semiannual Unified Agenda of Regulatory and Deregulatory Actions reports (Office of Information and Regulatory Affairs, 2020). The reports provide uniform data on regulatory and deregulatory actions that agencies plan to issue in the near and long-term future. The Unified Agenda reports published over 190,000 actions between 1995 and 2019, which are associated with 38,868 unique rules (as identified by Regulation Identifier Numbers (RINs)). Section 3 details our approach to define the dictionary and identify the news content related to regulatory policy. As a result, our final news corpus includes 608,172 regulation-related news articles. Table 1 shows the

1These keywords are only used to generate an initial corpus of news articles that are likely to discuss regulatory issues. A possible concern is that perceptions about regulation and deregulation are different. In a robustness check, we remove the articles containing the keywords starting with ”deregulat” and our measures and main results remain unchanged. See discussions in Section 5.2.

2Data for USA Today and the Washington Post are only available from January 1987.

3For example, the term “regulation” and its variants are often used in the context of sports. A February 7, 2019 article in USA Today says: “As you watch the NFL or any baseball game and see every replay tortured and analyzed from every angle, have you ever asked yourself, ‘You know, we could really use more regulations in sports.’”
number of articles from each newspaper.

In the baseline VAR, we use the same economic variables as those in Baker et al. (2016). Those include monthly data on employment (Bureau of Labor Statistics, 2022), effective federal funds rate, and industrial production (Board of Governors of the Federal Reserve System, 2022a,b), and monthly averages of the S&P 500 index (S&P Dow Jones Indices LLC, 2022). In the quarterly VAR, we use quarterly data on real gross domestic product (GDP) and real gross private domestic investment (Bureau of Economic Analysis, 2022a,b), and quarterly averages of employment, effective federal funds rate and S&P 500. For robustness checks, we add VIX (Cboe Exchange, Inc., 2022), the Michigan Consumer Sentiment Index (University of Michigan, 2022), the economic sentiment index (Shapiro et al., 2020), and the EPU index (Baker et al., 2016) into the monthly VARs. The monthly data cover the period from January 1985 through December 2021, and the quarterly data are from the first quarter of 1985 to the third quarter of 2021.

3 News Attention to Regulation

In this section, we describe the approach we use to identify regulation-related news articles from the initial news corpus. Controlling for the total number of news articles published in each newspaper, we first show evidence that news attention to regulation has been increasing over time.

3.1 Identifying Regulation-Related News

Identifying regulation-related news is challenging for several reasons. While some newspaper databases label news articles by subject categories such as finance, politics, and health care, news articles are rarely labeled as regulatory policy. Also, while regulation may be the main theme of an article, it may also be mentioned only in certain sections of an article that mainly discusses economic or political issues. This makes a standard article-level analysis
inappropriate to identify news content related to regulation. A simple search of a limited set of keywords like “regulation” or “regulator” would also return inaccurate results, because those words could be used in various contexts.

To identify the specific news content related to regulation, we define a dictionary of regulatory noun chunks to assess the context in which the keyword “regulation” or its variants are mentioned in an article. Specifically, we examine the sentence that mentions “regulat*” or “deregulat*” and its neighbor sentences (i.e., a sentence before and after the regulatory sentence). If any of the three sentences contain one or more regulatory noun chunks defined in our dictionary, then we consider these sentences as regulation-related news. An article can have multiple regulatory sentences, depending on the extent to which regulation is the focus of the article, and all these sentences and their neighbor sentences compose the regulatory section of the article. Specifically, we conduct this assessment in a three-step process.

First, we obtain noun chunks from the titles of all unique rules published in the Unified Agenda reports from 1985 to 2019. Noun chunks are “base noun phrases” identified using the NLP library spaCy. For example, the rule title “Test Procedures for the Analysis of Trace Metals Under the Clean Water Act” contains four noun chunks: [“Test Procedures,” “the Analysis,” “Trace Metals,” “the Clean Water Act”]. We then clean the noun chunks by eliminating special characters, removing leading articles (i.e., “the,” “a,” and “an” at the beginning of a noun chunk), and lemmatizing the tokens of the noun chunks. The above example thus becomes [“test procedure,” “analysis,” “trace metal,” “clean water act”]. We only keep the cleaned noun chunks with two or more tokens, because a single-token noun chunk such as “analysis” has too broad meaning to suggest any information specific to regulation. We iterate this process over all unique rule titles and eventually generate a list of unique n-token noun chunks \((n \geq 2)\). This list includes over 37,000 noun chunks and serves as the base for our dictionary.

Next, we preprocess the texts of all news articles in our initial data set. This includes segmenting sentences of an article, extracting the sentence that mentions “regulat*” or “dereg-
ulat*” (indexed \(i\)) and its neighbor sentences (indexed \(i - 1\) and \(i + 1\)), and lemmatizing the tokens in the sentences. We then search each of the n-token noun chunks from the first step in the extracted sentences using regular expression operations. If the three consecutive sentences \((i - 1\) to \(i + 1\)) contain one or more of the noun chunks, then these sentences are included in the regulatory section of the article.

As the third step, we conduct human checking and correction of the noun chunks that occur in the articles. Because the list of the n-token noun chunks automatically generated from the rule titles still includes some general terms that are mentioned frequently in the news articles but not specifically related to government regulation (e.g., “same time,” “first quarter,” and “other country”), we read through the noun chunks that occurred in all the news articles and manually filter out those general terms.\(^4\) After removing the general terms from the results, there remain 10,458 unique noun chunks that occur in 608,172 news articles, meaning that each of these articles contains a regulatory section. These noun chunks form our dictionary of regulatory noun chunks, which are also used for building our categorical indexes as discussed in Section 6. Appendix A lists 100 regulatory noun chunks with most occurrences in the news articles.

Our sentiment analyses in the remainder of the paper are based on the corpus of the regulatory sections in the 608,172 news articles.

3.2 Increasing News Attention to Regulation

Tracking the relative frequency of articles discussing regulatory issues over time can suggest trends in news attention to regulation. We investigate that by building a monthly index of news attention to regulation using an approach similar to Baker et al. (2016)’s approach to building their EPU index. That is, we scale the monthly count of news articles that contain regulatory sections by dividing it by the total number of news articles published in the newspaper in the month, and then standardize the scaled monthly counts and normalize

\(^4\)For filtering out the general terms, two coders went through the list of noun chunks and marked general terms independently, compared their results, and discussed to solve the discrepancies.
the time series to a mean of 100 from 1985 to 2009. Specifically, the monthly news attention index NA_t is calculated as:

$$NA_t = z_t \frac{100}{\frac{1}{T} \sum_{t=1}^{T} z_t},$$

where z_t is the mean of standardized monthly counts over newspapers:

$$z_t = \frac{1}{K} \sum_{i=1}^{K} \frac{x_{it}}{N_{it} \delta_{i,T}},$$

where $i = \{1, 2, ..., K\}$ denotes the newspaper, $t = \{1, 2, ..., T\}$ denotes the month, x_{it} is the raw count of articles related to regulation in newspaper i in month t, N_{it} is the total number of news articles published in newspaper i in month t, $\delta_{i,T}$ is the standard deviation of the scaled count $\frac{x_{it}}{N_{it}}$ over the time interval \tilde{T} for standardization and normalization (i.e., January 1985 – December 2009).

Figure 1 plots the monthly index of news attention to regulation. The overall trend suggests that regulation has been drawing increasing attention from the media, especially since the financial crisis. News attention to regulation raised during months of important regulatory developments or historical events that triggered massive regulatory responses. For example, the index shows spikes around the Lehman Brothers bankruptcy in 2008, the passage of Obamacare and the Dodd-Frank Act in 2010, and the 2016 and 2020 presidential elections, and a substantial drop during the month of the 9/11 attack in 2001. Beside the overall increasing trend, December 2020 marks particularly elevated news attention to regulation, presumably because of discussions about the regulatory agenda of the incoming Biden administration and potential regulatory approvals of COVID-19 vaccines.

The trend in news focus on regulation not only suggests that regulatory policy has become an increasingly popular topic among journalists, but also implies that regulation has become more relevant to their readers, potentially including consumers, workers, and business leaders. This also motivated our study to investigate the news content and their implications for the macroeconomy.
4 Measuring Regulatory Sentiment and Regulatory Uncertainty

This section starts with a description of the sentiment analysis method we use to estimate the sentiment and uncertainty scores of the regulation-related news articles in our corpus. Using the estimated scores, we compute the monthly indexes of regulatory sentiment and uncertainty from 1985 through 2021. We also present some evidence supporting the validity of these indexes.

4.1 Sentiment Analysis

As a popular field of NLP, sentiment analysis is used to extract, quantify, and analyze the semantic orientation of a document, such as customer reviews, social media, survey responses, and news articles. In addition to a mere polar view of sentiment (i.e., positive or negative), sentiment analysis methods can be applied to broader sentiment classifications to extract other subjective information in source material, such as emotional states (e.g., happiness, fear, and anger), subjectivity, confidence, and uncertainty. We use a lexicon-based approach for sentiment analysis. This approach assesses the semantic orientation of a document based on the frequency of words or phrases with a particular semantic orientation that occur in the document. It relies on pre-defined dictionaries of opinionated words, such as a list of positive or negative words. There are many available sentiment dictionaries designed for general purposes and some for specific domains.

We use the 2018 Loughran and McDonald (LM) dictionary (originally developed in Loughran and McDonald (2011)) to assess the sentiment and uncertainty in the regulatory sections of the relevant news articles in the baseline analysis. The LM dictionary was constructed specifically for the domain of finance, using a corpus of corporate 10-K reports (Loughran and McDonald, 2011). Because of its domain relevance, the LM dictionary has been frequently used in economic research (for example, Fraiberger (2016); Calomiris et al. 12
The 2018 version of the dictionary comprises sentiment word lists in several categories, including 2,355 words in the negative category, 354 words in the positive category, and 297 words in the uncertainty category.

However, we also notice that the LM positive and negative word lists are strongly unbalanced, with substantially more negative words than positive words. One reason is that Loughran and McDonald (2011) has a clear focus on the proportion of negative words in 10-Ks for detecting the association between tone and excess returns. They note that finance and accounting research generally finds little incremental information in positive words, and the LM positive word list was created more for completeness than “discerning an impact on tone identification” (Loughran and McDonald, 2011, p.45). While an unbalanced dictionary may not affect our interpretation of changes in sentiment over time, it will bias our sentiment assessment toward a disproportionately negative tone. For this reason, we also use two other dictionaries to construct the sentiment measure for comparison: the Harvard General Inquirer (GI) dictionary and the Lexicoder Sentiment Dictionary (LSD). The GI dictionary is a general-purpose lexicon originally developed in the 1960s and has been widely used in various disciplines. It covers several broad valence categories, including lists of 2,005 negative words and 1,637 positive words. The LSD is a comprehensive sentiment lexicon combining three pre-existing dictionaries and tailored primarily to political news (Young and Soroka, 2012). The LSD comprises 2,857 negative words and 1,709 positive words.

Similar to our search of regulatory noun chunks, we use regular expression to count occurrences of each sentiment word in the preprocessed regulatory section of an article. We incorporate a negation rule to take into account negated positive and negative words. That is, if an English negation word, such as “not,” “don’t,” or “cannot,” occurs within three tokens before the opinionated word, then the opinionated word would be considered as the opposite orientation. For example, the following regulatory section contains two occurrences of negative words as defined by the LM dictionary: “hazard” and “violation,” and three

5The three pre-existing dictionaries combined in the LSD are the GI, the Regressive Imagery Dictionary (Martindale, 1975), and the Roget’s Thesaurus (Roget, 1911).
occurrences of positive words: “boost,” “fear” (with the negation word “without”), and “boost.”

So, the department’s Occupational Safety and Health Administration in recent years has boosted spending on its consultation program, which allows little companies to ask for an OSHA visit to look for workplace hazards without fear of being cited for violations as a result of that visit. The idea is to boost voluntary compliance with safety regulations. The program’s funding rose 50% between fiscal 1996 and fiscal 2001, to $48.8 million, equal to about 11% of OSHA’s total budget.⁶

We use a standard formula to calculate sentiment scores. The regulatory sentiment score of an article is the difference between the proportion of positive words and the proportion of negative words in the regulatory section of the article. Therefore, a positive sentiment score indicates an overall positive tone in the news about regulation, and a negative score means an overall negative tone. The above example has a sentiment score of 1.22, suggesting a slightly positive tone toward OSHA’s regulatory consultation program.

We use a similar approach to assess uncertainty in regulation-related news content. The uncertainty category of the LM dictionary covers a broad range of terms in addition to “uncertainty” and “uncertain,” such as “ambiguity,” “confusion,” “doubt,” and “vague.” The regulatory uncertainty score of an article is the proportion of uncertainty words in the regulatory section of the article. A higher uncertainty score suggests a higher level of uncertainty expressed in the regulation-related news. Below is an example of a regulatory section with a relatively high uncertainty score (7.02). The uncertainty words “confusion,” “preliminary,” “vagueness,” and “confusing” all indicate a great degree of uncertainty around a regulation banning smoking in restaurants in New York City.

⁶The quote is from “GAO Criticizes OSHA’s Program for Small Businesses—Report Questions Effectiveness of Consultations as Visits and Hazards Decline” published by the Wall Street Journal on October 30, 2001.
Still, the law has clearly produced confusion. Dr. Hamburg, whose staff has so far issued only preliminary regulations for enforcing the smoking ban, said that final regulations would be published within two weeks, to “clarify some areas of vagueness.” Many restaurant owners said the most confusing part of the law governs smoking in bar areas and gardens.\footnote{The quote is from “Restaurants Complying On Smoking” published by the New York Times on May 21, 1995.}

4.2 Regulatory Sentiment and Uncertainty Indexes

Table 2 shows the descriptive statistics of the sentiment scores estimated using the LM, GI, and LSD dictionaries and the uncertainty scores using the LM dictionary. The absolute sentiment score that measures the polarity of a document is clearly dependent on the scope of opinionated words defined in the dictionary. Unsurprisingly, the sentiment measured using the LM dictionary is generally more negative compared with the GI and LSD. The LSD generates the most balanced result, with an approximately same number of articles estimated negative and positive. To illustrate how the three dictionaries assess a document differently, Appendix B shows examples of regulatory sections with negative and positive words identified from each dictionary. As shown in Table 2, the uncertainty scores indicate that approximately half of the articles expressed a degree of uncertainty in the sections that discuss regulation. Appendix B also includes the uncertainty words and estimated uncertainty scores for the examples.

To construct the monthly sentiment and uncertainty indexes, we use fixed effects regressions following Shapiro et al. (2020). The specification is:

\[s_j = u_{t(j)} + v_{i(j)} + \epsilon_j, \]

where \(s_j \) is the estimated regulatory sentiment or uncertainty score for article \(j \), \(u_{t(j)} \) is a year-month fixed effect, and \(v_{i(j)} \) is a newspaper fixed effect. The estimated coefficients on the
year-month fixed effects u_t from this regression are the monthly sentiment or uncertainty index, depending on the dependent variable. One advantage of this approach is that the newspaper fixed effects control for time-invariant heterogeneities across newspapers, which can potentially address the concern of ideological differences among news sources. This is particularly important for our study, because news sentiment toward government regulation could be largely affected by the political stance of the newspaper.

Figure 2 plots the regulatory sentiment indexes estimated using different dictionaries between January 1985 and December 2021. To focus on changes over time rather than relative polarity between indexes, we normalize the indexes by their means and standard deviations. The three time series demonstrate similar patterns over time and are strongly correlated with each other. The correlation between the LM and LSD indexes is 0.81; the correlation between the LM and GI indexes is 0.58; and the correlation between the LSD and GI indexes is 0.73. We also show the first principal component of the three standardized sentiment indexes in Figure 2, which explains 81 percent of the variance. All the three indexes and the principal component suggest that regulatory sentiment has changed over time. For example, the newspapers in the period of late 1980s and early 1990s appear to express a relatively negative tone when discussing regulation, while the sentiment largely improved around the mid-1990s and maintained at a stable and higher level until the early 2000s. In the following VAR analyses, we present the results using the LM sentiment index but include the results using the GI and LSD indexes and the principal component in the Appendix to show robustness.

Figure 3 plots the regulatory uncertainty index. In particular, we see more spikes in regulatory uncertainty during recent years. Regulatory uncertainty reached a historical peak in 2010, a year that marks many important events in the regulatory history, including the enactment of Obamacare (March 2010), the Deepwater Horizon oil spill (April 2010), and the passage of the Dodd-Frank Act (July 2010). Other large spikes occurred around the Lehman Brothers bankruptcy in September 2008, the Trump election in November 2016,
and the coronavirus outbreak in the U.S. in April 2020.

4.3 Validation

Since there are no established measures that capture regulatory sentiment or uncertainty in the way defined in our study, it is not feasible to validate our measures based on any “gold standard.” However, we check the validity of our measures indirectly in several ways.

First, we examine the news articles with extreme sentiment or uncertainty estimates. Appendix C shows ten articles with the lowest sentiment scores, ten articles with the highest sentiment scores, and ten articles with the highest uncertainty scores. Many articles with negative sentiment discuss firms’ violations of certain regulations, while articles with positive sentiment praise the effectiveness of some regulation or reflect positive prospect for regulatory changes. Articles with great uncertainty generally comment on confusion about existing regulations or uncertainty about future regulatory actions. Although not reflecting the whole picture, human reading of those articles suggests that the measures are consistent with our interpretation of regulatory sentiment and uncertainty. That is, the measures capture shifts in sentiment or uncertainty around the regulatory environment, which could be driven by a broad range of regulation-related events such as the promulgation of a new regulation, a company’s regulatory compliance or violation, a regulatory investigation, and a lawsuit challenging agency regulatory actions.

Second, to verify that our measures indeed capture relevant regulatory events, we study the word clouds of articles published in the months associated with regulatory sentiment or uncertainty shocks. As shown in Appendix D, the n-gram word cloud for each month provides common terms contained in the regulatory sections published in the month, which can be used to extrapolate the major events that caused the regulatory sentiment or uncertainty shock. For example, the word clouds show “Mr. Trump” for November 2016, “coronavirus pandemic” and “Food and Drug Administration” for April 2020, “New York Fed” for July 2012 (related to the Libor scandal), and “COVID 19 vaccine” and “public health” for May
2021. These word clouds illustrate terms that are consistent with the possible events associated with large regulatory sentiment or uncertainty fluctuations highlighted in Figures 2 and 3.

Third, we compare our measures with several related sentiment and uncertainty measures. Appendix E.1 plots our regulatory sentiment index with the economic sentiment index of Shapiro et al. (2020). The correlation between the regulatory sentiment index and economic sentiment index is 0.29 and statistically significant. While the two time series comove in some time periods, they do not always coincide with each other. For example, during the early 1990s recession, both economic sentiment and regulatory sentiment had substantial decreases. During the 2007-2008 financial crisis, however, regulatory sentiment did not experience a significant drop like economic sentiment. Also, regulatory sentiment seems to react more strongly to political events such as the Clinton health care reform and 2016 presidential election.

Appendixes E.2 and E.3 plot our regulatory uncertainty index with the aggregate EPU index and categorical EPU index on regulation from Baker et al. (2016). The regulatory uncertainty index has a statistically significant correlation of 0.34 with the aggregate EPU index and 0.43 with the regulatory EPU index. Although the correlations between regulatory uncertainty and EPU measures are only moderate, the measures demonstrate several spikes around the same time periods, such as those around Black Monday, the Lehman Brothers bankruptcy, the 2016 presidential election, and the coronavirus outbreak. Nevertheless, these measures also capture some different historical events. For example, EPU surged around the first and second Gulf wars, the 9/11 attacks, and the debt ceiling dispute in 2011, while regulatory uncertainty was relatively undisturbed around those time periods. Instead, a large increase in regulatory uncertainty occurred during January-April 2010, coinciding with the enactment of Obamacare and the Deepwater Horizon oil spill.

The variations between our regulatory measures and other sentiment or uncertainty measures can be attributed to the fact that they are capturing different types of perceptions.
The economic sentiment measure tracks news sentiment about economic conditions which may or may not concern government regulation. The aggregate EPU index measures economic uncertainty induced by broader policy issues, including regulatory, trade, fiscal, and monetary policies. Even though the regulatory EPU index is intended to measure policy uncertainty specific to regulation, it has a particular emphasis on financial regulation given how the regulation-specific text is identified. It is not surprising that our regulatory measures did not surge around the historical events that are less relevant to regulation, such as the Gulf wars, but rather captures more regulatory developments on healthcare and the environment. These comparisons suggest that our regulatory sentiment and uncertainty measures, while sharing some overlapping information with other economic sentiment or policy uncertainty measures, contain unique information about regulation and potentially different economic implications.

5 Macroeconomic Implications of Regulatory Sentiment and Uncertainty

In this section, we study macroeconomic implications of regulatory sentiment and uncertainty by examining impulse responses of macroeconomic variables to regulatory sentiment or uncertainty shocks. We discuss our baseline analysis and a series of robustness checks.

5.1 Impulse Responses

For the baseline analysis, we use the monthly VAR model of Baker et al. (2016), through which we estimate how measures of economic activity respond to a regulatory sentiment or uncertainty shock. Following their approach, we orthogonalize the shock by using the Cholesky decomposition with the following ordering of variables:

\[Y_t = [\text{reg}_t, \text{lsp}_t, \text{ffr}_t, \text{lemp}_t, \text{lip}_t], \]
where \(\text{reg} \) denotes our regulatory sentiment or uncertainty index, \(\text{lsp} \) is the log of S&P 500 index, \(\text{ffr} \) is the federal funds rate, \(\text{lemp} \) is log employment, and \(\text{lip} \) is log industrial production.\(^8\) The VAR includes three lags of all variables. We show impulse responses up to 60 months after the shock.

In Figure 4, Panel (a) plots the impulse responses of industrial production and employment to a one-standard-deviation negative shock to the regulatory sentiment index, with point estimates and 90 and 95 percent confidence bands. The estimates show that a negative sentiment shock reduces industrial production and employment. The effects on industrial production are statistically significant at the 5 percent level between 5 and 17 months after the shock and reach the maximum of a 0.43 percent drop at the 14th month post the shock. The shock also leads to a statistically significant reduction in employment for a long time period, lasting up to 20 months after the shock, and the maximum estimated drop is 0.2 percent. These baseline results are based on the LM-based regulatory sentiment index. When using the alternative sentiment indexes (i.e., the GI-based index, the LSD-based index, and the first principal component), we get very similar impulse response estimates (Appendix G).

Panel (b) of Figure 4 shows the impulse responses to a regulatory uncertainty shock. The effects of a one-standard-deviation shock that increases regulatory uncertainty are relatively short-lived, compared to the sentiment shock. Industrial production and employment drop by 0.15 percent and 0.14 percent, respectively, in the next month after the shock, but the effects start waning quickly and are not statistically significant at the 5 or 10 percent level after that.

In addition, we implement VARs using quarterly data to examine how GDP and gross investment respond to regulatory sentiment or uncertainty shocks. The identification of the quarterly VAR is based on three lags and Cholesky decomposition with the following order:

\(^8\)We tested for stationarity of our regulatory sentiment and uncertainty indexes. The Phillips-Perron test rejects unit root for all the indexes, while the ADF and KPSS tests suggest more mixed results. See test statistics in Appendix F.
$Y_t = [\text{reg}_t, \text{lsp}_t, \text{ffr}_t, \text{lemp}_t, \text{lgdp}_t]$, where lgdp denotes the log of real GDP. Appendix H plots the impulse response functions over 20 quarters after a shock.

Although the responses of GDP to a LM-based regulatory sentiment shock are only statistically significant at the 10 percent level, the responses using the other three alternative sentiment measures are all statistically significant at the 5 percent level. The GDP responses to a regulatory uncertainty shock are still not statistically significant. These estimates are consistent with the monthly VAR results for industrial production. In terms of investment, the responses to a regulatory sentiment shock are statistically significant at the 5 percent level if using the GI-based index or the first principle component but not so if using the LM or LSD dictionaries for measuring sentiment. A regulatory uncertainty shock is not associated with statistically significant effects on investment either. Therefore, although the estimates indicate a possible effect of regulatory sentiment on investment, this result is not conclusive given the lack of robustness.

In sum, the impulse response estimates indicate that regulatory sentiment has a larger and more robust link with aggregate economic activity than regulatory uncertainty. A drop in regulatory sentiment has a significant, persistent effect on future output and employment. An increase in regulatory uncertainty may reduce output and employment temporarily, but this effect is smaller in terms of magnitude and not always statistically significant.

5.2 Robustness

Alternative VAR Specifications

Similar to Baker et al. (2016), we make several modifications to the VAR specification to test the robustness of the results. Those include the VAR with reverse ordering, a bivariate VAR, a bivariate VAR with reverse ordering, dropping the S&P index, including the VIX, and including time trends. Appendix H shows the impulse responses to regulatory sentiment

9For the quarterly VAR, the regulatory sentiment and uncertainty indexes are re-estimated on the quarterly basis using regressions with year-quarter fixed effects.
or uncertainty shocks. The results suggest very similar impulse response patterns to the baseline estimates, particularly for regulatory sentiment shocks.

Local Projections

As an alternative to VAR, the local projection method of Jordà (2005) provides more flexible impulse response estimation by imposing weaker assumptions on the dynamics of the data. We use local projections to re-estimate the impulse responses to regulatory sentiment and uncertainty shocks. The estimation entails a distinct linear regression for each forecast horizon h with the following specification:

\[y_{i,t+h} = \alpha_i^h + \sum_{\tau=0}^{3} \beta_i^{h,\tau} r_{eg_{t-\tau}} + A_i^h \sum_{\tau=0}^{3} Y_{t-\tau} + \varepsilon_{i}^{t+h}, \]

where y_i is log industrial production or log employment, r_{eg} is the regulatory sentiment or uncertainty index, and Y is the matrix of economic variables including log S&P 500, federal funds rate, log employment, and log industrial production. Same as the VARs, we take three lags of the variables. We consider horizons up to 12 months after the shock ($h = \{0, 1, 2, ..., 12\}$).

Appendix J shows the impulse responses estimated from local projections. The results are consistent with the previous estimates. A regulatory sentiment shock leads to statistically significant reductions in both industrial production and employment, while the effects of a regulatory uncertainty shock are not statistically significant. The estimated magnitude of the impulse responses to a regulatory sentiment shock is even larger than the baseline results.

General Economic Sentiment and Policy Uncertainty

While we show in Section 4.3 that there are variations between our regulatory measures and general economic sentiment or policy uncertainty measures, it is still possible that the economic effects of regulatory sentiment or uncertainty shocks are picking up information
about effects of general economic sentiment or policy uncertainty embedded in the news. To investigate this issue further, we add measures of economic sentiment and policy uncertainty to the VARs, including the Michigan Consumer Sentiment Index, the news-based economic sentiment index of Shapiro et al. (2020), and the EPU index of Baker et al. (2016). As shown in Appendix K, most of the impulse response estimates are unaffected after controlling for any of these measures, regardless of the ordering in the Cholesky decomposition. The only notable difference from the baseline results is that the estimated effects of a regulatory sentiment shock on output and employment diminishes when the Shapiro et al. economic sentiment index is placed first in the ordering, but the drops still remains sizable.

In particular, the robust impulse response functions bolster our findings about the economic effects of regulatory sentiment. This robustness check suggests that our measure of regulatory sentiment reflects at least some unique information about economic activity that is not captured by general economic sentiment or policy uncertainty.

Interactions between Regulatory Sentiment and Uncertainty

Given that sentiment and uncertainty are sometimes viewed as related concepts, it is possible that the effects of regulatory sentiment and uncertainty shocks are conditional on each other. Using the approach from Caggiano et al. (2017), we estimate an Interacted-VAR and compute state-dependent generalized impulse response functions (GIRFs) to see: (1) whether the impact of regulatory sentiment shocks is different when regulatory uncertainty is particularly high, and (2) whether the impact of regulatory uncertainty shocks is different when regulatory sentiment is particularly low. The Interacted-VAR is as follows:

\[
Y_t = \alpha + \sum_{j=1}^{k} A_j Y_{t-j} + \left[\sum_{j=1}^{k} c_j (\text{sent}_{t-j} \times \text{unc}_{t-j}) \right] + u_t,
\]

where \(Y_t = [\text{sent}_t, \text{lspt}_t, \text{ffrt}_t, \text{lemp}_t, \text{lip}_t, \text{unc}_t]'\) is the \((n \times 1)\) vector of endogenous variables including the regulatory sentiment index, log S&P 500, federal funds rate, log employment,
log industrial production, and the regulatory uncertainty index, \((sent_{t-j} \times unc_{t-j})\) is an interaction term of regulatory sentiment and uncertainty, \(A_j\) are \((n \times n)\) matrices of coefficients, \(c_j\) are \(n \times 1\) vectors of coefficients, and \(u_t\) is the \((n \times 1)\) vector of error terms. Same as our baseline VAR, we include three lags of all variables.

As shown in Appendix L, the results suggest no clear evidence that the impulse responses to regulatory sentiment shocks under high and low regulatory uncertainty are different. While the estimated negative effects of a regulatory sentiment shock are generally larger when regulatory uncertainty is high, the GIRFs under high and low uncertainty generally follow similar trajectories, and their differences are not statistically significant at the 10 percent level. Similar results are observed for GIRFs to regulatory uncertainty shocks under high and low regulatory sentiment.

Regulation or Deregulation

When we generate our initial news corpus, we search for articles that contain terms starting with "regulat" or "deregulat." One may concern that the economic impact of sentiment or uncertainty about regulation that imposes restrictions may be different from that about deregulation (i.e., the reduction or elimination of regulations). To investigate whether that influences our results, we remove articles that contain "deregulat" and re-run the analyses. Among the 608,172 articles covered in the baseline analysis, 31,265 articles contain terms starting with "deregulat." The revised regulatory sentiment and uncertainty indexes based on the remaining 576,907 articles are highly correlated with the baseline indexes, with both correlations over 0.97.

Appendix M shows the impulse responses to a regulatory sentiment or uncertainty shock using the revised indexes. Compared to the baseline estimates, the output and employment responses to a regulatory uncertainty shock are nearly unchanged. However, the responses to a regulatory sentiment shock in the robustness check are slightly smaller in magnitude and only statistically significant at the 10 percent level. This suggests that sentiment about
dereegulation may have different macroeconomic implications than sentiment about other elements affecting the regulatory environment. This robustness check is only to show that removing news content that is possibly related to deregulation does not change our results substantially. More analysis is required to further examine whether and how the effects of perceptions about regulation and deregulation differ, but it is out of the scope of this paper.

6 Sentiment and Uncertainty by Regulatory Policy Area

While the application of our regulatory sentiment and uncertainty indexes suggests some interesting implications, these measures capture information in the news about regulation in general. However, regulation is diverse, involving various policy areas and segments of the economy. To discover how regulatory sentiment and uncertainty differ by policy area and how they connect to economic activity, we build categorical indexes of regulatory sentiment and uncertainty for 14 policy areas. We present the indexes and impulse response estimates in this section.

6.1 Categorizing News Articles

To categorize relevant news content by regulatory area, we use the dictionary of regulatory noun chunks described in Section 3.1. Specifically, we rely on the fact that the regulatory noun chunks are extracted from rule titles and that rules are issued by agencies with specific regulatory authorities. For example, the Environmental Protection Agency generally issues environmental regulations, the Food and Drug Administration issues regulations to protect food safety and health, and the Commodity Futures Trading Commission regulates part of the financial market. Therefore, we categorize agencies by regulatory area according to their authorities and assume that the noun chunks extracted from the rules issued by a given agency are associated with the regulatory area of the agency.

As a result, we specify 14 regulatory areas for the agencies in our sample, including con-
sumer safety and health, national and homeland security, transportation, labor and work-
place, environment and natural resources, energy, finance and banking, general business and
trade, agriculture and rural development, education and culture, communications, criminal
justice, society, and international relations. Appendix N lists examples of the agencies, their
designated areas, and rule titles. After linking regulatory noun chunks back to agencies, the
vast majority of the noun chunks (8,750 out of 10,458) in our dictionary are designated with
one regulatory area, while a small proportion of the noun chunks appear in rules issued by
multiple agencies and thus are associated with multiple regulatory areas (e.g., “final rule,”
“administrative requirement,” and “technical amendment”). We use only the area-specific
noun chunks (i.e., the regulatory noun chunks associated with only one area) for categorizing
the news articles.

To verify the relevance of the noun chunks, we conduct human checking of the area-specific
noun chunks that occur most frequently in our regulation-related corpus. Specifically, we
read the top 100 regulatory noun chunks with most occurrences for each area and remove
general or irrelevant terms. For example, the terms “federal law,” “public hearing,” and
“government agency” are linked to the area of consumer safety and health, since they happen
to appear only in the rule titles related to consumer safety and health; however, they do not
contain information specific to this area and thus are removed from the classification. As a
result, the dictionary is refined to include 8,432 area-specific noun chunks after the human
checking.

Since the regulatory section of a news article in our corpus contains one or more of the
noun chunks, the article can potentially be classified into regulatory areas based on the
area-specific noun chunks mentioned. The following is an example of regulatory section:

Automobile manufacturers are financing a multimillion dollar lobbying cam-
paign aimed at persuading state legislatures to require motorists to buckle up
their seat belts, a move designed to kill a federal regulation requiring the
industry to equip vehicles with more expensive air bags by 1989. Last year,
legislatures in New York, New Jersey and Illinois adopted mandatory seat belt laws and legislation already has been filed on Beacon Hill to bring about the same end.10

This regulatory section contains four regulatory noun chunks: “seat belt,” “federal regulation,” “air bag,” and “seat belt” (with “seat belt” occurring twice). Among these terms, “federal regulation” is a common term used in rule titles and thus not an area-specific noun chunk, whereas “seat belt” and “air bag” are noun chunks unique to the area of transportation in our dictionary. Therefore, we classify this article into the transportation category, based on the area associated with “seat belt” and “air bag.”

In longer regulatory sections, it is common that there are many regulatory noun chunks that are linked to multiple unique areas. In that case, we define the dominant area of an article as the most common area across all the area-specific noun chunks in the regulatory section. This approach intends to capture the primary regulatory areas discussed in the relevant text of a news article. Mathematically, suppose there are n occurrences of area-specific noun chunks in the regulatory section (duplicated noun chunks are counted multiple times), $\mathbf{a}_{m \times 1}^p$ denotes a $m \times 1$ vector for the pth occurrence of noun chunks, where the qth element of the vector $a_{q}^{p} = 1$ if the pth noun chunk is associated with the qth area ($q = \{1, 2, \ldots, m\}$), and otherwise $a_{q}^{p} = 0$. We add the vectors for all noun chunks:

$$\sum_{p=1}^{n} \mathbf{a}_{m \times 1}^p = \mathbf{b}_{m \times 1}.$$

Then the dominant area is q_{max} such that $b_{q_{\text{max}}} = \max_{1 \leq q \leq m} b_{q}$. In some instances, there are multiple dominant areas for an article.

As a result, 359,659 articles are classified into one or more regulatory areas. Appendix0 shows the top 30 area-specific noun chunks for each area. AppendixP plots article counts by area, showing that finance and banking is the regulatory area that has drawn the most

10The quote is from “Automakers’ Millions Back Seat-Belt Laws” published by Boston Globe on January 30, 1985.
news attention, followed by consumer safety and health, environment and natural resources, and general business and trade.

6.2 Categorical Indexes

We use the same approach to construct the categorical indexes as the aggregate regulatory sentiment and uncertainty indexes. Namely, for a given regulatory area, we create the indexes by fitting the fixed effects regression to the estimated sentiment or uncertainty scores of the articles classified into the area. The specification is:

\[
s_{j,q} = u_{t(j,q)} + v_{i(j,q)} + \epsilon_{j,q},
\]

where \(s_{j,q}\) is the estimated sentiment or uncertainty score for article \(j\) in area \(q\), \(u_{t(j,q)}\) is a year-month fixed effect, and \(v_{i(j,q)}\) is a newspaper fixed effect. The estimated coefficients on the year-month fixed effects \(u_{t(j,q)}\) from the regression compose the monthly sentiment or uncertainty index for regulatory area \(q\).

Appendix Q plots the categorical sentiment and uncertainty indexes over time. There are substantial variations in the measured sentiment and uncertainty for different regulatory areas. For example, the sentiment about environment and natural resources regulation largely improved in the 1990s, a decade beginning with the passage of the 1990 Clean Air Act amendments. The sentiments around finance and banking regulation and general business and trade regulation comoved closely over time, with large drops around recessions. In contrast, regulatory uncertainty around those two areas raised substantially during and post recessions.

6.3 Impulse Responses

We conduct VAR analyses using the categorical indexes and the same economic variables as described in Section 5.1 and compute impulse response functions. Our baseline analysis
suggests particularly strong linkage between our sentiment and uncertainty measures in some regulatory areas and future economic outcomes.

Figure 5 shows the impulse responses for selected regulatory areas, while the full figures for all areas are available in Appendix R. Regulatory sentiment shocks concerning transportation, communications, and finance and banking are associated with statistically significant drops in future output. The effect of a transportation-related regulatory sentiment shock is particularly large, with a maximum estimated reduction of 0.43 percent. The effect of a sentiment shock about finance and banking regulation is relatively short-lived, with statistically significant drops only during the first three months after the shock. Employment also decreases after sentiment shocks about transportation and communications regulation, while the responses are only significant at the 10 percent level. The effect of a finance and banking sentiment shock on employment, although transitory, is still sizable.

While we do not observe statistically significant effects of an aggregate regulatory uncertainty shock (as discussed in Section 5.1), regulatory uncertainty shocks in the areas of labor and workplace and energy appear to have a stronger linkage with economic outcomes. Increased uncertainty around labor and workplace regulation and energy regulation reduces future industrial production, although the effects are only significant at the 10 percent level.

7 Conclusion

In this study, we examine how regulatory sentiment and uncertainty expressed in the news changes over time and affects aggregate economic activity. We identify an original corpus of regulation-related news from seven leading U.S. newspapers, which shows that news attention to regulation has been increasing over time. We then use lexicon-based sentiment analysis of the relevant news text to construct monthly indexes of regulatory sentiment and uncertainty from 1985 through 2021.

Like other news-based measures, our regulatory measures capture public perceptions of
the current and future regulatory environment. The perceptions are affected not only by an addition or reduction of regulations but also by a broad range of regulation-related events at both macro and micro levels, such as a presidential transition, the passage of an influential bill, a company’s regulatory compliance or violation, and a regulatory investigation. Shifts in regulatory sentiment or uncertainty, like shocks to the regulatory environment that induce negative perception or higher uncertainty, can affect aggregate economic outcomes.

Using VARs, we estimate how aggregate output and employment in the economy respond to regulatory sentiment and uncertainty shocks. The impulse response functions suggest that a negative regulatory sentiment shock is associated with large, persistent drops in future output and employment, while a regulatory uncertainty shock overall only has transitory effects. The impulse response estimates are robust to various modifications to the empirical specification and data. In particular, the effects of regulatory sentiment shocks largely remain after controlling for existing measures of general economic sentiment and policy uncertainty, which suggests that our measure of regulatory sentiment captures some unique information about the economy. Also, these effects do not depend on the degree of regulatory uncertainty present in the economy.

To further explore what types of regulatory policy drive the connection between regulation and macroeconomic outcomes, we construct categorical indexes of sentiment and uncertainty for 14 regulatory policy areas. Our estimates of impulse responses using the categorical indexes suggest that negative regulatory sentiment shocks related to transportation and communications lead to persistent, large drops in future output and employment, and sentiment shocks around finance and banking regulation have relatively transitory but also sizable effects. Regardless of the lack of findings on persistent effects of aggregate regulatory uncertainty shocks in our analysis, aggregate output appears to be more sensitive to increased uncertainty around labor and workplace regulation and energy regulation compared to the other areas.

As our analysis suggests, regulatory sentiment plays a more important role in the ag-
aggregate economy than regulatory uncertainty. Future research could further explore the mechanisms through which regulatory sentiment affects macroeconomic outcomes. The text-based approaches used in our study could also be applied to constructing industry-specific or topic-specific regulatory sentiment and uncertainty measures to examine their economic effects.
Tables

Table 1: Article Counts by Newspaper

<table>
<thead>
<tr>
<th>Newspaper</th>
<th>All articles</th>
<th>Unique articles</th>
<th>Regulatory articles</th>
<th>First regulatory article</th>
<th>Last regulatory article</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall Street Journal</td>
<td>259,714</td>
<td>253,862</td>
<td>168,874</td>
<td>1985-01-02</td>
<td>2021-12-31</td>
</tr>
<tr>
<td>New York Times</td>
<td>283,773</td>
<td>273,223</td>
<td>164,626</td>
<td>1985-01-01</td>
<td>2021-12-31</td>
</tr>
<tr>
<td>Los Angeles Times</td>
<td>130,697</td>
<td>129,998</td>
<td>78,438</td>
<td>1985-01-01</td>
<td>2021-12-31</td>
</tr>
<tr>
<td>The Washington Post</td>
<td>120,506</td>
<td>117,519</td>
<td>72,705</td>
<td>1987-01-01</td>
<td>2021-12-31</td>
</tr>
<tr>
<td>Chicago Tribune</td>
<td>100,049</td>
<td>99,327</td>
<td>56,154</td>
<td>1985-01-01</td>
<td>2021-12-31</td>
</tr>
<tr>
<td>Boston Globe</td>
<td>77,358</td>
<td>75,946</td>
<td>44,862</td>
<td>1985-01-01</td>
<td>2021-12-31</td>
</tr>
<tr>
<td>USA Today</td>
<td>40,951</td>
<td>40,387</td>
<td>22,513</td>
<td>1987-04-01</td>
<td>2021-12-30</td>
</tr>
<tr>
<td>Total</td>
<td>1,013,048</td>
<td>990,262</td>
<td>608,172</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2: Descriptive Statistics of Estimated Sentiment andUncertainty Scores

<table>
<thead>
<tr>
<th></th>
<th>Sentiment Score</th>
<th>Uncertainty Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LM</td>
<td>GI</td>
</tr>
<tr>
<td>Mean</td>
<td>-2.06</td>
<td>1.06</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>2.56</td>
<td>3.97</td>
</tr>
<tr>
<td>Minimum</td>
<td>-37.50</td>
<td>-30.77</td>
</tr>
<tr>
<td>Maximum</td>
<td>13.33</td>
<td>30.77</td>
</tr>
<tr>
<td>Articles with negative scores</td>
<td>443,875</td>
<td>205,877</td>
</tr>
<tr>
<td>Articles with positive scores</td>
<td>72,946</td>
<td>344,282</td>
</tr>
<tr>
<td>N</td>
<td>608,172</td>
<td>608,172</td>
</tr>
</tbody>
</table>
Figures

Figure 1: Monthly Index of News Attention to Regulation
(January 1985 – December 2021)

Notes: The index is constructed by standardizing the monthly counts of regulation-related news articles scaled by the monthly counts of all news articles in each newspaper and normalizing the time series to a mean of 100 from January 1985 to December 2009. The index is calculated using data from seven U.S. newspapers including Boston Globe, Chicago Tribune, Los Angeles Times, New York Times, USA Today, Wall Street Journal, and the Washington Post. Data for the Washington Post are available from January 1987, and data for USA Today are available from April 1987.
Figure 2: Monthly Index of Regulatory Sentiment
(January 1985 – December 2021)

Notes: The figure plots three regulatory sentiment indexes estimated using the Loughran and McDonald (LM) dictionary, the General Inquirer (GI) dictionary, and the Lexicoder Sentiment Dictionary (LSD), respectively, and the first principal component of the three indexes. All indexes are normalized to have mean equal to zero and standard deviation equal to one.
Figure 3: Monthly Index of Regulatory Uncertainty
(January 1985 – December 2021)

Notes: The figure plots the regulatory uncertainty index estimated using the uncertainty category of the Loughran and McDonald (LM) dictionary.
Figure 4: Impulse Responses (Monthly VAR, Baseline)

(a) Impulse Responses to a Regulatory Sentiment Shock

(b) Impulse Responses to a Regulatory Uncertainty Shock

Notes: The figures plot VAR-estimated impulse response functions for industrial production and employment to: (a) a one-standard-deviation negative shock to regulatory sentiment, and (b) a one-standard-deviation upward shock to regulatory uncertainty. The sentiment index is estimated using the Loughran and McDonald (LM) dictionary. The shock is orthogonalized by using the Cholesky decomposition with the following ordering of variables: the regulatory sentiment or uncertainty index, the log of S&P 500 index, the federal funds rate, log employment, and log industrial production. VARs are fit to monthly data from January 1985 through December 2021. Shaded areas show 90 percent (light gray) and 95 percent (dark gray) confidence bands.
Figure 5: Impulse Responses for Selected Regulatory Areas

(a) Output Responses to a Regulatory Sentiment Shock

(b) Employment Responses to a Regulatory Sentiment Shock

(c) Output Responses to a Regulatory Uncertainty Shock

Notes: The figures plot VAR-estimated impulse responses for selected regulatory areas. For all areas, refer to Appendix R. The sentiment indexes are estimated using the Loughran and McDonald (LM) dictionary. The shock is orthogonalized by using the Cholesky decomposition with the following ordering of variables: the categorical regulatory sentiment or uncertainty index, the log of S&P 500 index, the federal funds rate, log employment, and log industrial production. Shaded areas show 90 percent (light gray) and 95 percent (dark gray) confidence bands.
References

Roget, P. M. (1911). Roget’s Thesaurus of English Words and Phrases. TY Crowell Company.

Appendices

(For Online Publication)

A The Most Common Regulatory Noun Chunks in News Articles

Notes: The above shows 100 most common regulatory noun chunks that occur in all the regulation-related news articles (N=608,172). The number indicates the number of occurrences of the noun chunk across all the articles. The noun chunks are lemmatized, so, for example, “hold company” is a lemmatized version of “holding company.”
B Examples of Regulatory Sections

Example 1 (Wall Street Journal, 1993-06-22):

Property and casualty insurers would have to meet stringent capital requirements under a proposal likely to be adopted by insurance regulators. The standards, similar to those now in place for life and health insurers, would require property and casualty insurers to have sufficient capital to meet the riskiness of their investments and operations. Failure to meet the requirements would mean regulators could either seize a troubled insurer or order operational changes. The property and casualty market, alone, involves annual premiums totaling $500 billion. Under the proposal, each insurer must report to what extent it exceeds or falls below its minimum-capital threshold. Insurance regulators released a draft of the rules at a conference for state insurance commissioners here. “We are entering the home stretch of one of the most important improvements in insurance regulation,” said Virginia Insurance Commissioner Stephen Foster, chairman of the National Association of Insurance Commissioners. Regulators will vote on whether to adopt the proposal in December. The rules, if passed, would go into effect next year and the results would be available to the public in the spring of 1995. Insurance experts say it’s unlikely that regulators will make major changes in the proposal before voting on it. The effort comes at a time when Congress is concerned about whether states are up to the job of overseeing insurance companies. The company wants to prove that the idea is administratively possible, said Roger Joslin, State Farm’s treasurer. Under the plan, State Farm can still trade securities but cannot withdraw from the account or convert safe assets into riskier ones without approval of the trustee and state insurance regulators.

Regulatory noun chunks: [capital requirement, minimum capital, insurance regulation, major change, insurance company]

Sentiment:
LM negative words: [stringent, concerned, risky, seize, troubled]
LM positive words: [improvement]
LM sentiment score: -1.4085
GI negative words: [casualty, capital, pass, casualty, stringent, capital, fall, capital, casualty, involve, make, risky, approval (with negation), mean, seize, order]
GI positive words: [health, sufficient, meet, pass, meet, home, important, improvement, company, premium, expert, make, major, company, security, safe, asset, credit, meet, order]
GI sentiment score: 1.4085
LSD negative words: [casualty, riskiness, casualty, casualty, unlikely, concerned, riskier, approval (with negation), failure, seize, troubled]
LSD positive words: [sufficient, adopted, improvements, foster, adopt, experts, effort, safe, assets, credit]
LSD sentiment score: -0.3521

Uncertainty:
LM uncertainty words: [riskiness, possible, risky, could]
LM uncertainty score: 1.4085
Example 2 (Wall Street Journal, 2010-06-22):

House and Senate Democrats are under pressure to complete their overhaul of financial regulations before President Barack Obama meets with world leaders this weekend, setting up a scramble to iron out differences on a range of complicated provisions. The discussions cover issues from bank regulation to consumer protection. They seek to find a balance that may appease the few centrist Republicans willing to support the bill, while also keeping liberal Democrats happy. Lawmakers are also close to a deal that would place a new consumer-financial protection bureau within the Federal Reserve, scrapping an original White House proposal to create a standalone agency. The change, which closely follows language adopted by the Senate in May, would likely not appease business groups, which oppose the creation of any new consumer-protection regulator with broad powers. Lawmakers are divided over whether it would have power over auto dealerships. Lawmakers on Monday did reach a deal that would limit the amount of fees banks are allowed to charge retailers for processing debit cards. The conference committee of congressional negotiators seeking to resolve differences between the House and Senate versions of the bill plans to work through the consumer-protection issues on Tuesday, the Volcker Rule on Wednesday, and derivatives regulation on Thursday. The timing could slip if lawmakers need more time to resolve disputes.

Regulatory noun chunks: [consumer protection, consumer protection, volcker rule, consumer protection, debit card, consumer financial protection bureau, federal reserve]

Sentiment:
- LM negative words: [oppose, dispute, complicated, close]
- LM positive words: [happy, resolve, resolve]
- LM sentiment score: -0.4444
- GI negative words: [divide, appease (with negation), oppose, deal, limit, charge, need, dispute, iron, close, deal]
- GI positive words: [protection, appease, willing, support, liberal, happy, resolve, protection, deal, allow, resolve, complete, meet, deal, protection, create]
- GI sentiment score: 2.6667
- LSD negative words: [divided, appease (with negation), oppose, limit, charge, disputes, complicated, scrapping]
- LSD positive words: [protection, balance, appease, support, keeping, happy, resolve, protection, adopted, creation, protection, allowed, resolve, protection, create]
- LSD sentiment score: 3.1111

Uncertainty:
- LM uncertainty words: [may, could]
- LM uncertainty score: 0.8889

Example 3 (New York Times, 2016-11-10):

Republican control of Washington sets the stage for a sweeping shift in economic policy. Mr. Trump has proposed a fairly standard set of conservative prescriptions, such as lower taxes and less regulation, with one notable departure: a promise to reduce trade with other nations. The centerpiece of Mr. Trump’s plans is a major overhaul of the federal tax code. An analysis by the nonpartisan Committee for a Responsible Federal Budget estimated that Mr. Trump’s plans would increase the federal debt by $5.3 trillion over the next decade, and raise the ratio of debt to gross domestic product to 105 percent. Mr. Trump also has
promised to reduce federal regulation. Business groups argue that the Obama administration has impeded economic growth by significantly expanding regulation in areas including environmental and worker protections. He has specifically promised to reverse some new environmental rules, such as the climate change regulations on power plants. Earlier this year, he also proposed the “dismantling” of the Dodd-Frank Act, which overhauled federal regulation of the financial industry in the aftermath of the 2008 financial crisis. The act created the Consumer Financial Protection Bureau, a likely target for Republican legislators. He also has threatened a variety of sanctions against American companies that move manufacturing jobs overseas, although the legality of such measures is unclear. Republicans who broadly agree with Mr. Trump on taxes and regulation may have greater reservations about his views on trade. The party has long supported increased trade among nations.

Regulatory noun chunks: [economic growth, consumer financial protection bureau, change regulation, federal regulation, dodd frank act, federal regulation]

Sentiment:
- LM negative words: [argue, impede, threaten, against, aftermath, crisis]
- LM positive words: [great]
- LM sentiment score: -2
- GI negative words: [argue, impede, threaten, against, unclear, crisis, tax, low, raise]
- GI positive words: [protection, support, create, company, promise, great, promise, major, notable, promise]
- GI sentiment score: 0.4
- LSD negative words: [argue, impeded, threatened, against, unclear, crisis, debt, debt, gross]
- LSD positive words: [protections, supported, created, protection, agree, frank, notable, responsible]
- LSD sentiment score: -0.4

Uncertainty:
- LM uncertainty words: [unclear, may]
- LM uncertainty score: 0.8

Example 4 (Boston Globe, 1998-10-25):

“We don’t know whether it will be feasible to lower emissions 75 percent by 2005, but we will participate in the effort.” On sludge, or the muck left over when wastewater is drained, Shaheen’s plan builds on the ongoing efforts at the Department of Environmental Services to more tightly regulate mercury in the waste, some 18,600 tons of which are spread on farmland annually as fertilizer. The department is moving to adopt a new standard for how much mercury may be in the sludge, and is considering – as per Shaheen’s plan – an even tighter standard.

Regulatory noun chunks: [environmental service, new standard]

Sentiment:
- LM negative words: [waste]
Example 5 (The Washington Post, 2001-04-05):

All recreational boats will be limited to one bushel of hard crabs and three dozen soft or peeler crabs per day. The new limits were implemented after the Chesapeake Bay Commission’s Bi-State Blue Crab Advisory Committee decided last year that fishing regulators should reduce crab harvests by 15 percent over three years to increase spawning stock. In recent years, crab harvests have dipped near all-time lows throughout the region. They pointed out that other factors – including recreational crabbers, environmental damage and predatory fish – also contribute to diminishing crab populations. Those factors, the watermen said, should also be addressed when local regulators devised new limits. The commercial crabbers’ reaction to the new limits varied from disappointment to relief. He suggested that the panel’s new limits are too tough on the commercial crab industry. “These regulations are just getting piled on us one after the other,” said Conway, of Crisfield. “If society wants to eliminate the waterman, then these regulations are a very efficient way of doing it.” The shortening of the crabbing season drew more complaints from watermen than did the lowering of pot limits.

Regulatory noun chunks: [recreational boat, chesapeake bay, advisory committee, environmental damage]

Sentiment:

LM negative words: [complaint, disappointment, damage, predatory, diminish]
LM positive words: [efficient]
LM sentiment score: -2.1277
GI negative words: [eliminate, limit, hard, limit, low, limit, get, limit, too, complaint, limit, limit, disappointment, point, damage]
GI positive words: [efficient, just, relief, contribute]
GI sentiment score: -5.8511
LSD negative words: [eliminate, limited, hard, limits, limits, limits, too, tough, complaints, limits, limits, disappointment, damage, predatory]
LSD positive words: [efficient, recreational, relief, recreational]
LSD sentiment score: -5.3191

Uncertainty:

LM uncertainty words: [may]
LM uncertainty score: 1.0204

LM positive words: []
LM sentiment score: -1.0204
GI negative words: [know (with negation), lower, waste, even]
GI positive words: [feasible, consider, even]
GI sentiment score: -1.0204
LSD negative words: [wastewater, drained, waste]
LSD positive words: [feasible, eort, eorts, adopt]
LSD sentiment score: 1.0204

Uncertainty:

LM uncertainty words: [may]
LM uncertainty score: 1.0204
Articles with Highest or Lowest Regulatory Sentiment or Uncertainty Estimates

Articles with Highest Sentiment Estimates:

<table>
<thead>
<tr>
<th>Title</th>
<th>Newspaper</th>
<th>Publication Date</th>
<th>Regulatory Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Going for the gators // 189 in Florida take part in annual hunt</td>
<td>USA Today</td>
<td>9/24/1991</td>
<td>Despite the danger, there have been no serious injuries in four years of hunts. Officials cite safety precautions and strict laws regulating hunters. Across the dark lake, hunters’ lights flicker.</td>
</tr>
<tr>
<td>Business and Finance</td>
<td>Wall Street Journal</td>
<td>8/19/1993</td>
<td>Other firms will be pitching competitive services, and in some cases possibly better technology, for making calls and sending data. Regulators and lawmakers aren’t expected to stop AT&T’s plans to buy McCaw, despite Baby Bells’ concerns. The Bells plan to use the AT&T-McCaw alliance to win greater freedom to enter new businesses.</td>
</tr>
<tr>
<td>The Nation; It’s Reaganomics, Alive and Irresistible</td>
<td>New York Times</td>
<td>2/11/1996</td>
<td>Government spending was not cut. Neither were Government regulations. The Federal Reserve kept interest rates high.</td>
</tr>
<tr>
<td>Japanese Competition Is No Threat</td>
<td>Los Angeles Times</td>
<td>10/15/1989</td>
<td>We gain from the growth and improvement of the Japanese economy. If we remove regulations and reduce burdensome taxes, competition will push us toward greater efficiency. Both we and the Japanese will gain.</td>
</tr>
<tr>
<td>Crystal Ball Realty Consolidation, Web Expansion On Tap For The New Year</td>
<td>Chicago Tribune</td>
<td>1/4/1998</td>
<td>Their back end is efficient, their front end is friendly and their good name airlifts them. Regulators squeeze. The government will get more involved in e-commerce.</td>
</tr>
</tbody>
</table>
Greetings From the New Africa

Wall Street Journal 4/20/2012

Yet we can easily find real success stories. Ghana and Mozambique have both turned their economies around by taking advantage of the resource boom and creating regulatory frameworks that attract local and outside investment. Ghana has achieved a consistent 5% growth rate since the turn of the century, when political stability encouraged the rising middle classes to create a domestic market for goods and services.

High Number of Lead Poison Cases Found

Los Angeles Times 8/30/1990

It is difficult to know if California residents have any greater risk to lead exposure than other states because the California studies used the more sensitive levels for lead exposure, Kizer said. But, he said, lead exposure can be easily reduced by enforcement of OSHA regulations. Among children, most lead exposure comes from living near industries using lead or from lead-based paint in homes.

Cool Idea: $30-Million Prize for Efficient Fridge

Los Angeles Times 7/8/1992

The prize represents a new strategy, offering what the consortium calls a “golden carrot” to improve efficiency. Fernstrom said he believes that such a “golden carrot” approach will be more effective than new regulations to boost efficiency standards. More utilities are expected to join the group later on, increasing the reward to perhaps $40 million.

10 people profit a tidy $8.9B from Trump rally

USA Today 1/11/2017

Buffett’s exposure to the financial industry has fueled much of the gains, since the sector has been the biggest winner from Trump’s victory. Investors are hopeful higher interest rates and lighter regulations could boost financials’ profits. Berkshire’s $37 billion market value gain has been impressive, but several banks have performed even better.

Articles with Lowest Sentiment Estimates:

<table>
<thead>
<tr>
<th>Title</th>
<th>Newspaper</th>
<th>Publication Date</th>
<th>Regulatory Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Source</td>
<td>Date</td>
<td>Summary</td>
</tr>
<tr>
<td>--</td>
<td>--------------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Alpha Discusses Suit</td>
<td>Boston Globe</td>
<td>6/12/1985</td>
<td>The suit alleges that the company failed to fully disclose in a timely manner that a vice president had been accused of violations of the anti-kickback statutes. Alpha denies all material allegations in the complaint, denies that it violated Securities and Exchange Commission regulations, and denies all liability to the plaintiff and the purported class.</td>
</tr>
<tr>
<td>Michael who? An unlikely site for Milken</td>
<td>Chicago Tribune</td>
<td>1/7/1993</td>
<td>A number of companies became overextended and fell into bankruptcy. Milken pled guilty to conspiracy, fraud, violating public disclosure rules, misleading regulators and aiding the filing of a false tax return. As part of his plea bargain, prosecutors dropped charges against his brother, Lowell, who also worked at Drexel.</td>
</tr>
<tr>
<td>EPA Sues Operators Of 30 Sites That Burn Hazardous Waste</td>
<td>Wall Street Journal</td>
<td>9/29/1993</td>
<td>The Environmental Protection Agency filed lawsuits against operators of 30 incinerators, boilers and industrial furnaces, alleging violations of federal regulations on burning hazardous waste. The agency is seeking penalties of $19.8 million for the alleged violations, which mainly involve a regulation requiring businesses that burn hazardous waste to monitor emissions. The lawsuits are the latest in a series of EPA actions to stiffen oversight of hazardous-waste burning.</td>
</tr>
<tr>
<td>The Navy Won’t Stand for It</td>
<td>Los Angeles Times</td>
<td>10/3/1987</td>
<td>Kenneth D. Harvey, guilty of assault, sexual harassment, conduct unbecoming an officer, dereliction of duty, disobedience of naval regulations and inappropriate social fraternization. And the penalty for his behavior was appropriately severe.</td>
</tr>
</tbody>
</table>
Business & Finance

Wall Street Journal

11/8/2014

Abercrombie warned that its sales dropped 12% in the third quarter because of slowing mall traffic. Regulators faulted Wall Street banks for “serious deficiencies” in loans backing buyouts. Lawmakers stepped up pressure on Takata following allegations employees concealed evidence of air-bag defects.

For The Record

Los Angeles Times

2/13/2010

That is incorrect. Mercury was fined $300,000 for seven violations of state insurance regulations. The state dropped an eighth allegation of wrongdoing involving the use of lapses in coverage to calculate insurance rates, a subject addressed in Prop. 17.

<table>
<thead>
<tr>
<th>Title</th>
<th>Newspaper</th>
<th>Publication Date</th>
<th>Regulatory Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>When it comes to annuities, there are pros, cons and certain levels of risk</td>
<td>The Washington Post</td>
<td>7/7/2019</td>
<td>“Retirement is a risky business,” Graves said. “There’s market risk, withdrawal rate risk, inflation risk, deflation risk, long-term care need risk, change in tax-code risk, regulatory risk and, of course, longevity risk. That’s a lot of stuff to worry about.”</td>
</tr>
<tr>
<td>Verizon: Keep your number; Cellphone carrier reverses position</td>
<td>USA Today</td>
<td>6/25/2003</td>
<td>Companies with lower ratings could suffer, he says. The new regulation could even make it possible for consumers to switch their landline phone number to a cellphone, but how that might work is unclear. Almost 17% of users surveyed in June by consulting firm The Management Network Group said they would do so if they could.</td>
</tr>
<tr>
<td>Could insecurity be the secret to CEOs’ success?; Some execs say paranoia keeps them on their toes</td>
<td>USA Today</td>
<td>2/1/2007</td>
<td>“Your supplier today could be your competitor tomorrow. An acquisition could eliminate a competitor, while a government regulation could create five. In a changing environment like business, I believe insecurity may be more of a driver than in sports,” Pritchett says.</td>
</tr>
<tr>
<td>No Subpoena For Tyson At Hearing</td>
<td>New York Times</td>
<td>7/4/1997</td>
<td>But the length of any ban depends on the five-person commission. If the commission revoked his license, Tyson, under state regulations, could apply yearly to have it reinstated. The commission could reinstate the license, or it could deny his applications indefinitely.</td>
</tr>
<tr>
<td>Title</td>
<td>Newspaper</td>
<td>Date</td>
<td>Text</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Alternate Plan as Health Option Muddies Debate</td>
<td>New York Times</td>
<td>8/17/2009</td>
<td>Ms. Ignagni asked. “What are the regulatory requirements? It may sound benign, but it may use administered prices.</td>
</tr>
<tr>
<td>Say 'Aaah'; Booster Shots; What Gets Doctors' Goat? Well...We Do</td>
<td>Los Angeles Times</td>
<td>5/21/2001</td>
<td>But not all agree. “Compliance seems too authoritarian, adherence seems too sticky, fidelity has too many connotations, maintenance suggests a repair crew, and self-regulation or self-management seems too liberal,” wrote one Dutch doctor. Recalcitrant?</td>
</tr>
<tr>
<td>Capitol Journal; Munger ready to protect voters</td>
<td>Los Angeles Times</td>
<td>3/30/2015</td>
<td>Additional words in the Elections Clause allow for a possible good government solution, reformers believe. It reads: “...but the Congress may at any time by law make or alter such regulations...” That means Congress perhaps could permit legislatures to assign the redistricting chore to independent panels.</td>
</tr>
<tr>
<td>Roche dismisses idea that it may abandon its offer for Syntex</td>
<td>Wall Street Journal</td>
<td>8/15/1994</td>
<td>Roche Holding Ltd. dismissed speculation that it might scrap a pending $5.3 billion bid for Syntex Corp. of Palo Alto, Calif., but balked at predicting when the regulatory review of the huge transaction might be completed. Syntex stock fell in early New York trading Friday amid rumors that the big Swiss drug maker might pull out of the agreed Syntex takeover.</td>
</tr>
<tr>
<td>Pop quiz</td>
<td>The Washington Post</td>
<td>9/12/2011</td>
<td>That states could not force children to attend public schools and that they could attend private schools instead. c) That state and federal governments could not regulate what religious schools could teach. d) That state governments could not set qualifications for teachers at religious schools.</td>
</tr>
<tr>
<td>Consumers Power's Walter Boris To Take Early Retirement in '86</td>
<td>Wall Street Journal</td>
<td>3/28/1985</td>
<td>The case is pending. State regulators have suggested that a change in the utility’s top management might be the price necessary to win a substantial rate increase.</td>
</tr>
</tbody>
</table>
D Word Clouds of Articles Published in Selected Months

Months with Positive Regulatory Sentiment Shocks
- September 1993
- November 2016
- May 2021

Months with Negative Regulatory Sentiment Shocks
- September 1990
- April 2010
- July 2012

Months with Upward Regulatory Uncertainty Shocks
- September 2008
- January 2010
- April 2020
E Comparing Sentiment and Uncertainty Indexes

E.1 Comparing Regulatory Sentiment Index and Economic Sentiment Index

Notes: The figure plots the regulatory sentiment index estimated using the Loughran and McDonald (LM) dictionary and the economic sentiment index of Shapiro et al. (2020). Both indexes are normalized to have mean equal to zero and standard deviation equal to one.
E.2 Comparing Regulatory Uncertainty Index and Economic Policy Uncertainty Index

Notes: The figure plots the regulatory uncertainty index estimated using the Loughran and McDonald (LM) dictionary and the economic policy uncertainty index of Baker et al. (2016). Both indexes are normalized to have mean equal to zero and standard deviation equal to one.

Notes: The figure plots the regulatory uncertainty index estimated using the Loughran and McDonald (LM) dictionary and the economic policy uncertainty index of Baker et al. (2016). Both indexes are normalized to have mean equal to zero and standard deviation equal to one.
E.3 Comparing Regulatory Uncertainty Index and Regulatory EPU Index

Notes: The figure plots the regulatory uncertainty index estimated using the Loughran and McDonald (LM) dictionary and the categorical EPU index on regulation of Baker et al. (2016). Both indexes are normalized to have mean equal to zero and standard deviation equal to one.
F Stationarity Tests for the Regulatory Sentiment and Uncertainty Indexes

<table>
<thead>
<tr>
<th>Index</th>
<th>ADF test statistic</th>
<th>Phillips-Perron test statistic</th>
<th>KPSS test statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM sentiment index</td>
<td>-3.4439 (p=0.0095)</td>
<td>-14.4608 (p<0.0001)</td>
<td>0.3463 (p=0.1008)</td>
</tr>
<tr>
<td>GI sentiment index</td>
<td>-1.999 (p=0.2870)</td>
<td>-16.5472 (p<0.0001)</td>
<td>0.8963 (p=0.0043)</td>
</tr>
<tr>
<td>LSD sentiment index</td>
<td>-4.1360 (p=0.0008)</td>
<td>-14.6422 (p<0.0001)</td>
<td>1.0287 (p=0.0021)</td>
</tr>
<tr>
<td>Sentiment PC</td>
<td>-2.4469 (p=0.1289)</td>
<td>-14.6020 (p<0.0001)</td>
<td>0.7834 (p=0.0080)</td>
</tr>
<tr>
<td>Uncertainty index</td>
<td>-3.0151 (p=0.0335)</td>
<td>-15.9190 (p<0.0001)</td>
<td>1.1470 (p=0.0011)</td>
</tr>
</tbody>
</table>

Notes: The sentiment PC represents the first principal component of the LM, GI, and LSD sentiment indexes.
Notes: The figures plot VAR-estimated impulse response functions for industrial production and employment to a one-standard-deviation negative shock to regulatory sentiment, using the sentiment indexes estimated from the General Inquirer (GI) dictionary and the Lexicoder Sentiment Dictionary (LSD) as well as the first principal component of the GI, LSD, and Loughran and McDonald (LM) sentiment indexes. Shaded areas show 90 percent (light gray) and 95 percent (dark gray) confidence bands.
H Impulse Responses (Quarterly VAR)

H.1 GDP Responses

Notes: The figures plot VAR-estimated GDP responses to a one-standard-deviation negative shock to regulatory sentiment or a one-standard-deviation upward shock to regulatory uncertainty. Sentiment measures are indexes estimated from the Loughran and McDonald (LM) dictionary, the General Inquirer (GI) dictionary, the Lexicoder Sentiment Dictionary (LSD), and the first principal component (PC) of the three sentiment indexes. Shaded areas show 90 (light gray) and 95 (dark gray) percent confidence bands.
Notes: The figures plot VAR-estimated investment responses to a one-standard-deviation negative shock to regulatory sentiment or a one-standard-deviation upward shock to regulatory uncertainty. Sentiment measures are indexes estimated from the Loughran and McDonald (LM) dictionary, the General Inquirer (GI) dictionary, the Lexicoder Sentiment Dictionary (LSD), and the first principal component (PC) of the three sentiment indexes. Shaded areas show 90 (light gray) and 95 (dark gray) percent confidence bands.
I Impulse Responses (Monthly VAR, Alternative VAR Specifications)

(a) Impulse Responses to a Regulatory Sentiment Shock

(b) Impulse Responses to a Regulatory Uncertainty Shock

Notes: The figures plot VAR-estimated impulse response functions for industrial production and employment to: (a) a one-standard-deviation negative shock to regulatory sentiment, and (b) a one-standard-deviation upward shock to regulatory uncertainty. The sentiment index is estimated using the Loughran and McDonald (LM) dictionary. Several modifications are made to the baseline VAR specification, including reverse ordering, a bivariate VAR, a bivariate VAR with reverse ordering, dropping the S&P index, including the VIX, and including time trends.
J Impulse Responses (Local Projections)

(a) Impulse Responses to a Regulatory Sentiment Shock

(b) Impulse Responses to a Regulatory Uncertainty Shock

Notes: The figures plot impulse response functions estimated using the local projection method for industrial production and employment to: (a) a one-standard-deviation negative shock to regulatory sentiment, and (b) a one-standard-deviation upward shock to regulatory uncertainty. The sentiment index is estimated using the Loughran and McDonald (LM) dictionary. Shaded areas show 90 (light gray) and 95 (dark gray) percent confidence bands.
K Impulse Responses (Monthly VAR, Controlling for General Economic Sentiment and Policy Uncertainty)

K.1 Impulse Responses to Regulatory Sentiment Shocks

Notes: The figures plot VAR-estimated impulse response functions for industrial production and employment to a one-standard-deviation negative shock to regulatory sentiment, after adding the Michigan Consumer Sentiment Index, the economic sentiment index of Shapiro et al. (2020), or the EPU index of Baker et al. (2016). The sentiment index is estimated using the Loughran and McDonald (LM) dictionary.
K.2 Impulse Responses to Regulatory Uncertainty Shocks

Notes: The figures plot VAR-estimated impulse response functions for industrial production and employment to a one-standard-deviation upward shock to regulatory uncertainty, after adding the Michigan Consumer Sentiment Index, the economic sentiment index of Shapiro et al. (2020), or the EPU index of Baker et al. (2016). The sentiment index is estimated using the Loughran and McDonald (LM) dictionary.
L Interactions between Regulatory Sentiment and Uncertainty

L.1 Generalized Impulse Response Functions to Regulatory Sentiment Shocks under High and Low Regulatory Uncertainty

The high regulatory uncertainty state is defined as the months above the 75th percentile of the regulatory uncertainty index, and the low regulatory uncertainty state is the months below that. To identify regulatory sentiment shocks, we use the Cholesky decomposition with the following ordering: regulatory sentiment (the LM-based index), log S&P 500, federal funds rate, log employment, log industrial production, and regulatory uncertainty. The following figure plots the generalized impulse response functions for industrial production and employment to a one-standard-deviation negative regulatory sentiment shock.

Notes: Dashed-yellow line: low regulatory uncertainty state. Solid-blue line: high regulatory uncertainty state. Solid-yellow lines and gray areas: 90 percent confidence bands.
L.2 Generalized Impulse Response Functions to Regulatory Uncertainty Shocks under High and Low Regulatory Sentiment

The low regulatory sentiment state is defined as the months below the 25th percentile of the regulatory sentiment index, and the high regulatory sentiment state is the months above that. To identify regulatory uncertainty shocks, we use the Cholesky decomposition with the following ordering: regulatory uncertainty, log S&P 500, federal funds rate, log employment, log industrial production, and regulatory sentiment (the LM-based index). The following figure plots the generalized impulse response functions for industrial production and employment to a one-standard-deviation upward regulatory uncertainty shock.

Notes: Dashed-yellow line: low regulatory sentiment state. Solid-blue line: high regulatory sentiment state. Solid-yellow lines and gray areas: 90 percent confidence bands.
M Sentiment and Uncertainty about Regulation and Deregulation

Notes: The figures plot VAR-estimated impulse response functions for industrial production and employment to: (a) a one-standard-deviation negative regulatory sentiment shock, and (b) a one-standard-deviation upward regulatory uncertainty shock. The sentiment and uncertainty indexes are estimated using the Loughran and McDonald (LM) dictionary, after removing news articles that contain words starting with “deregulat.” The shock is orthogonalized by using the Cholesky decomposition with the following ordering of variables: the regulatory sentiment or uncertainty index, the log of S&P 500 index, the federal funds rate, log employment, and log industrial production. VARs are fit to monthly data from January 1985 through December 2021. Gray areas and yellow solid lines show 90 percent confidence bands.
Examples of Agencies, Regulatory Areas, and Rule Titles

<table>
<thead>
<tr>
<th>Regulatory Area</th>
<th>Agency</th>
<th>Department</th>
<th>Rule Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>agriculture and rural development</td>
<td>Agricultural Marketing Service</td>
<td>Department of Agriculture</td>
<td>National Organic Program</td>
</tr>
<tr>
<td>communications</td>
<td>Federal Communications Commission</td>
<td>N/A</td>
<td>Streamlining the Commission’s Rules and Regulations for Satellite Application and Licensing Procedures (IB Docket No. 95-117)</td>
</tr>
<tr>
<td>consumer safety and health</td>
<td>Centers for Medicare & Medicaid Services</td>
<td>Department of Health and Human Services</td>
<td>Deduction of Incurred Medical Expenses (Spenddown) (HCFA-2020-F)</td>
</tr>
<tr>
<td>criminal justice</td>
<td>Bureau of Prisons</td>
<td>Department of Justice</td>
<td>Volunteer Community Service Projects</td>
</tr>
<tr>
<td>education and culture</td>
<td>Office of Elementary and Secondary Education</td>
<td>Department of Education</td>
<td>Improving Basic Programs Operated by Local Educational Agencies</td>
</tr>
<tr>
<td>energy</td>
<td>Energy Efficiency and Renewable Energy</td>
<td>Department of Energy</td>
<td>Energy Efficiency Standards for Room Air Conditioners</td>
</tr>
<tr>
<td>environment and natural resources</td>
<td>Office of Air and Radiation</td>
<td>Environmental Protection Agency</td>
<td>National Volatile Organic Compounds (VOC) Emission Standards for Consumer Products; Amendments</td>
</tr>
<tr>
<td>finance and banking</td>
<td>Commodity Futures Trading Commission</td>
<td>N/A</td>
<td>Review of Commission Disclosure Requirements Concerning Commodity Pool Operators</td>
</tr>
<tr>
<td>general business and trade</td>
<td>Small Business Administration</td>
<td>N/A</td>
<td>Certificate of Competency</td>
</tr>
<tr>
<td>international relations</td>
<td>Agency for International Development</td>
<td>N/A</td>
<td>Administration of Grants and Cooperative Agreements</td>
</tr>
<tr>
<td>labor and workplace</td>
<td>Employment and Training Administration</td>
<td>Department of Labor</td>
<td>Airline Deregulation: Employee Benefit Program</td>
</tr>
<tr>
<td>national and homeland security</td>
<td>Bureau of Citizenship and Immigration Services</td>
<td>Department of Homeland Security</td>
<td>Employment Verification by Employers That Are Members of a Multi-Employer Association</td>
</tr>
<tr>
<td>society</td>
<td>Office of Fair Housing and Equal Opportunity</td>
<td>Department of Housing and Urban Development</td>
<td>Economic Opportunities for Low- and Very-Low-Income Persons (FR-2898)</td>
</tr>
<tr>
<td>transportation</td>
<td>Federal Aviation Administration</td>
<td>Department of Transportation</td>
<td>Objects Affecting Navigable Airspace</td>
</tr>
</tbody>
</table>
O The Most Common Area-Specific Noun Chunks by Regulatory Area

Area Name: consumer safety and health
Unique Regulatory Noun Chunks: 1363
Top 30 Regulatory Noun Chunks and Occurrences:

Area Name: national and homeland security
Unique Regulatory Noun Chunks: 747
Top 30 Regulatory Noun Chunks and Occurrences:

Area Name: transportation
Unique Regulatory Noun Chunks: 748
Top 30 Regulatory Noun Chunks and Occurrences:

Area Name: labor and workplace
Unique Regulatory Noun Chunks: 222
Top 30 Regulatory Noun Chunks and Occurrences:
Area Name: environment and natural resources
Unique Regulatory Noun Chunks: 1606

Top 30 Regulatory Noun Chunks and Occurrences:

Area Name: energy
Unique Regulatory Noun Chunks: 340

Top 30 Regulatory Noun Chunks and Occurrences:

Area Name: finance and banking
Unique Regulatory Noun Chunks: 1190

Top 30 Regulatory Noun Chunks and Occurrences:

Area Name: general business and trade
Unique Regulatory Noun Chunks: 587

Top 30 Regulatory Noun Chunks and Occurrences:
Area Name: agriculture and rural development
Unique Regulatory Noun Chunks: 194
Top 30 Regulatory Noun Chunks and Occurrences:

Area Name: education and culture
Unique Regulatory Noun Chunks: 116
Top 30 Regulatory Noun Chunks and Occurrences:

Area Name: communications
Unique Regulatory Noun Chunks: 191
Top 30 Regulatory Noun Chunks and Occurrences:

Area Name: criminal justice
Unique Regulatory Noun Chunks: 74
Top 30 Regulatory Noun Chunks and Occurrences:

Area Name: society
Unique Regulatory Noun Chunks: 621

Top 30 Regulatory Noun Chunks and Occurrences:

Area Name: international relations

Unique Regulatory Noun Chunks: 58

Top 30 Regulatory Noun Chunks and Occurrences:

Frequencies of Articles By Regulatory Area

Notes: The figure plots the number of news articles classified into each regulatory policy area in our sample. An article can be classified into multiple areas.
Q Monthly Indexes By Regulatory Area

Q.1 Monthly Sentiment Index By Regulatory Area

Notes: The figures plot the sentiment indexes estimated using the Loughran and McDonald (LM) dictionary for each regulatory policy area from January 1985 through December 2021.
Q.2 Monthly Uncertainty Index By Regulatory Area

Notes: The figures plot the uncertainty indexes estimated using the Loughran and McDonald (LM) dictionary for each regulatory policy area from January 1985 through December 2021.
R Impulse Responses by Regulatory Area (Monthly VAR)

R.1 Industrial Production Responses to Regulatory Sentiment Shocks

Notes: The figures plot VAR-estimated impulse responses of industrial production to a one-standard-deviation negative sentiment shock for each regulatory policy area. The sentiment indexes are estimated using the Loughran and McDonald (LM) dictionary. The shock is orthogonalized by using the Cholesky decomposition with the following ordering of variables: the regulatory sentiment index, the log of S&P 500 index, the federal funds rate, log employment, and log industrial production. Shaded areas show 90 (light gray) and 95 (dark gray) percent confidence bands.
R.2 Employment Responses to Regulatory Sentiment Shocks

Notes: The figures plot VAR-estimated impulse responses of employment to a one-standard-deviation negative sentiment shock for each regulatory policy area. The sentiment indexes are estimated using the Loughran and McDonald (LM) dictionary. The shock is orthogonalized by using the Cholesky decomposition with the following ordering of variables: the regulatory sentiment index, the log of S&P 500 index, the federal funds rate, log employment, and log industrial production. Shaded areas show 90 (light gray) and 95 (dark gray) percent confidence bands.
R.3 Industrial Production Responses to Regulatory Uncertainty Shocks

Notes: The figures plot VAR-estimated impulse responses of industrial production to a one-standard-deviation upward uncertainty shock for each regulatory policy area. The shock is orthogonalized by using the Cholesky decomposition with the following ordering of variables: the regulatory uncertainty index, the log of S&P 500 index, the federal funds rate, log employment, and log industrial production. Shaded areas show 90 (light gray) and 95 (dark gray) percent confidence bands.
R.4 Employment Responses to Regulatory Uncertainty Shocks

Notes: The figures plot VAR-estimated impulse responses of employment to a one-standard-deviation upward uncertainty shock for each regulatory policy area. The shock is orthogonalized by using the Cholesky decomposition with the following ordering of variables: the regulatory uncertainty index, the log of S&P 500 index, the federal funds rate, log employment, and log industrial production. Shaded areas show 90 (light gray) and 95 (dark gray) percent confidence bands.